Fall 2013

Name: _____

Sample Quiz 9

Question 1. (10 pts)

(a) Determine whether the function $f(z) = |z|^2$ is analytic on \mathbb{C} .

Solution: $f(z) = x^2 + y^2$. So the real part is $u(x, y) = x^2 + y^2$ and the imaginary part is v(x, y) = 0. We have

$$\frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = 2y$$
$$\frac{\partial v}{\partial x} = 0, \quad \frac{\partial v}{\partial y} = 0.$$

The Cauchy-Riemann equations are not satisfied. Therefore, f is not analytic on $\mathbb{C}.$

(b) Determine whether the function $g(z) = \cos(x) + i\sin(y)$ is analytic on \mathbb{C} , where z = x + iy.

Solution: This is similar to part (a). Try to test whether Cauchy-Riemann equations are satisfied.

Question 2. (10 pts)

Evaluate the following integrals.

(a)

$$\int_C \frac{z}{(z-2)^2} dz$$

where C is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ oriented counterclockwise.

Solution: Notice that the function $f(z) = \frac{z}{(z-2)^2}$ is analytic on the region $\Omega = \mathbb{C} \setminus \{2\}$. The unit circle $C = \{z \in \mathbb{C} : |z| = 1\}$ is contained in Ω with the inside of C lying in Ω . So we can apply Cauchy's Theorem, which implies that

$$\int_C \frac{z}{(z-2)^2} dz = 0$$

(b)

$$\int_C z^3 dz$$

where C is the upper semicircle of radius 1 starting at 1 and ending at -1.

Solution: Note that $F(z) = \frac{z^4}{4}$ is the antiderivative of z^3 . Since the domain of $f(z) = z^3$ is \mathbb{C} , hence simply-connected, and the curve C is clearly contained in \mathbb{C} . We know that

$$\int_C z^3 dz = F(-1) - F(1) = 0$$