\qquad

Sample Quiz 9

Question 1. (10 pts)
(a) Determine whether the function $f(z)=|z|^{2}$ is analytic on \mathbb{C}.

Solution: $f(z)=x^{2}+y^{2}$. So the real part is $u(x, y)=x^{2}+y^{2}$ and the imaginary part is $v(x, y)=0$. We have

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =2 x, & \frac{\partial u}{\partial y}=2 y \\
\frac{\partial v}{\partial x} & =0, & \frac{\partial v}{\partial y}=0
\end{aligned}
$$

The Cauchy-Riemann equations are not satisfied. Therefore, f is not analytic on \mathbb{C}.
(b) Determine whether the function $g(z)=\cos (x)+i \sin (y)$ is analytic on \mathbb{C}, where $z=x+i y$.

Solution: This is similar to part (a). Try to test whether Cauchy-Riemann equations are satisfied.

Question 2. (10 pts)

Evaluate the following integrals.
(a)

$$
\int_{C} \frac{z}{(z-2)^{2}} d z
$$

where C is the unit circle $\{z \in \mathbb{C}:|z|=1\}$ oriented counterclockwise.
Solution: Notice that the function $f(z)=\frac{z}{(z-2)^{2}}$ is analytic on the region $\Omega=$ $\mathbb{C} \backslash\{2\}$. The unit circle $C=\{z \in \mathbb{C}:|z|=1\}$ is contained in Ω with the inside of C lying in Ω. So we can apply Cauchy's Theorem, which implies that

$$
\int_{C} \frac{z}{(z-2)^{2}} d z=0
$$

(b)

$$
\int_{C} z^{3} d z
$$

where C is the upper semicircle of radius 1 starting at 1 and ending at -1 .
Solution: Note that $F(z)=\frac{z^{4}}{4}$ is the antiderivative of z^{3}. Since the domain of $f(z)=z^{3}$ is \mathbb{C}, hence simply-connected, and the curve C is clearly contained in \mathbb{C}. We know that

$$
\int_{C} z^{3} d z=F(-1)-F(1)=0
$$

